Set No. 1

Mrc in Forensie Sci

Question Booklet No.

15P/302/3

(To be filled up	by the cane	didate by	blue/b	lack b	all-point pe	n)	,
Roll No.								
Serial No. of	OMR Answer	Sheet	***************************************	••••••	*********			
Day and Dat	e	******	4 2444444444444		,	(Sign	ature of Invig	ilator)

INSTRUCTIONS TO CANDIDATES

(Use only blue/black ball-point pen in the space above and on both sides of the Answer Sheet)

- Within 10 minutes of the issue of the Question Booklet, check the Question Booklet to ensure that it
 contains all the pages in correct sequence and that no page/question is missing. In case of faulty
 Question Booklet bring it to the notice of the Superintendent/Invigilators immediately to obtain a
 fresh Question Booklet.
- 2. Do not bring any loose paper, written or blank, inside the Examination Hall except the Admit Card without its envelope.
- 3. A separate Answer Sheet is given. It should not be folded or mutilated. A second Answer Sheet shall not be provided. Only the Answer Sheet will be evaluated.
- 4. Write your Roll Number and Serial Number of the Answer Sheet by pen in the space provided above.
- On the front page of the Answer Sheet, write by pen your Roll Number in the space provided at the top and by darkening the circles at the bottom. Also, wherever applicable, write the Question Booklet Number and the Set Number in appropriate places.
- 6. No overwriting is allowed in the entries of Roll No., Question Booklet no. and Set no. (if any) on OMR sheet and Roll No. and OMR sheet no. on the Question Booklet.
- 7. Any change in the aforesaid entries is to be verified by the invigilator, otherwise it will be taken as unfairmeans.
- Each question in this Booklet is followed by four alternative answers. For each question, you
 are to record the correct option on the Answer Sheet by darkening the appropriate circle in the
 corresponding row of the Answer Sheet, by pen as mentioned in the guidelines given on the
 first page of the Answer Sheet.
- For each question, darken only one circle on the Answer Sheet. If you darken more than one circle or darken a circle partially, the answer will be treated as incorrect.
- 10. Note that the answer once filled in ink cannot be changed. If you do not wish to attempt a question, leave all the circles in the corresponding row blank (such question will be awarded zero marks).
- 11. For rough work, use the inner back page of the title cover and the blank page at the end of this Booklet.
- 12. Deposit only OMR Answer Sheet at the end of the Test.
- 13. You are not permitted to leave the Examination Hall until the end of the Test.
- 14. If a candidate attempts to use any form of unfair means, he/she shall be liable to such punishment as the University may determine and impose on him/her.

Total No. of Printed Pages: 64 अमिन अवरण पृष्ठ पर दिये एए हैं।

ROUGH WORK एक कार्य

Total No. of Questions: 240

No. of Questions to be attempted: 120

Time: 2 Hours Full Marks: 360

Note: (i) Attempt as many questions as you can. Each question carries 3 (Three) marks. One mark will be deducted for each incorrect answer. Zero mark will be awarded for each unattempted question.

- (ii) If more than one alternative answers seem to be approximate to the correct answer, choose the closest one.
- (iii) This question paper contains two Sections, viz : Section-A and Section-B. Details of Section-A and Section-B are as follows :
 - (a) **Section-A** contains **60** questions from General Sciences and **20** questions of General Nature.
 - (b) Section-B contains four sub-sections namely: Biology, Chemistry, Mathematics and Physics with 40 questions in each. The candidate has to select only one of the four sub-sections of Section-B.

SECTION-A

01.	Ball	istics means	:											
	(1)	the science	of pro	ojectiles	and firea	arms								
	(2)	the science	of Oc	iontolo	gy									
	(3)	the science	of DN	IA mate	ching									
	(4)	the science	the science of tape authentication											
02	The	team carrying out Narco test comprises :												
	(1)	team carrying out Narco test comprises :												
	(2)		forensic scientist and anesthetist forensic chemist and anesthetist											
	(3)					41.4								
	8 8	forensic psy												
	(*)	public prose	cuw	anda	nestneust									
03.	The	itai-itai disea	ace is	s due to) :									
	(1)	cadmium po	oisoni	ng	(2)	arsenic po	oisonine	:						
	(3)	mercury poi	isonir	ng	(4)	-	-	•						
04														
		ospheric regi		which										
	60000000	troposphere			(2)									
	(3)	mesosphere			(4)	thermospi	here							
05.	Whi	ch one is the	e maj	or cult	orit contri	buting the	greenh	OUSE	effect					
	and	global warmi	ng :	a.•			0							
	(1)	CO ₂	(2)	CH ₄	(3)	N_2O	(4)	H_2O						
06.	The	theory which	h adu	ncates	the living	r beings sa			•					
ATTACHER STATES	othe	r living being	s is t	ermed	:	g nemgs ca	ın arıse	only	irom					
	(1)	Bio-genesis			(2)	Abio gene	sis							
	(3)	Catastrophis	sm		(4)	Cosmozojo	3							
					ve* * 1									

07. The use of which of the following deva better insight into the internal st(1) Super computer	rices truct (2)	Spectrophotometer
(3) Electron microscope	(4)	Ultra centrifuge
 (1) acidic (3) neutral O9. A genetically engineered form of been developed. The objective of the line of the li	(2) (4) erinja his i ritive al pa mala ffect	moderate acidic il, known as the Bt-brinjal has s: qualities arasite to drug like chloroquine arial vaccine to combat malaria ive malaria vaccine?
 (2) Man does not develor important infection (3) Vaccine can be developed of the second of the s	only attention our v	against bacteria st and not the definitive host
	5	

12.	At present, scientists can determine the arrangement or relative positions of genes of DNA sequences on a chromosome. How does
	(a) It is possible to be
	(a) It is possible to know the pedigree of live stock

(b) It is possible to understand the causes of all human diseases

(c) It is possible to develop disease resistant animal breeds.

Which of the statement given above is /are correct?

(1) a and b only

(2) b only

(3) a and c only

(4) a, b, and c only

13. Small pox is caused by:

(1)Bacteria

(2) Virus

(3) Fungus

(4) Algae

14. Select the one which is not a mixture:

(1) Air

(2) Gasoline

(3) LPG

(4) Distilled water

15. Plant cells can usually be distinguished because only plant cells

(1) Cell walls and mitochondria

(2) Golgi bodies and central vacuoles

(3) Cell walls and central vacuoles

Chromosomes and mitochondria (4)

16. With reference to normal human beings, consider the following

(a) In response to presence of Hel, secretion is produced from

(b) Enterogastrone is proceeded in the small intestine in response

Which of the above statements is/are correct?

(1) Only a

(2) Only b

(3) botha&b

(4) neither a nor b

		و المناسبة	ha =		cess is called :
17.	Whe	n a gas is turned into liquid, t			eposition
	(1)	Condensation	(2)		Sublimation
	(3)	Evaporation	(4)	2	Manimanon
10	Fort	h's seasons are caused by wh	ich c	of t	he following:
10.	(1)	the tilt of the earth's rotation	rela	tiv	re to the ecliptic as earth
	(1)	revolves round the sun			
	(2)	the varying amount of sunsp	ot ac	tiv	rity
	(3)	the earth's orbit around the	sun i	is	an eclipse rather than a
	, -,	circle.			
	(4)	the rotation of earth during a	a 24	hr	· day.
19.	The	accumulation of stress along	bou	ıne	daries of lithospheric plates
4.5.	rest	alts in which of the following :			
	(1)	Earthquakes			
	(2)	Hurricanes			
	(3)	Magnetic reversals			
	(4)	Increased deposition of dee	p–se	a :	sediments
20	Wh	ich of the following items will	be a	att	racted to the north pole of a
20.	per	manent magnet by a magneti	C IOL	ce	*
	(1)	the north pole of another po	erma	me	ent magnet
	(2)	s standard and	a pe	тп	nanent magnet.
	(3)				
	(4)	A negatively charged rubber	r-rod	1.	•
21.	. Th	e critical temperature of wate	r is	hi	gher than that of O2 because
	the	H ₂ O molecule has:	·~		two covalent bonds
	(1)	fewer electrons than O2	(2	- 50 (02)	
	(3)	V- shape	(4	.)	dipole moment

2	2. W	hen cyclohex	ane i	s poured in	wate	er.	it floats, beca		
	(1) cyclohexai	ne is	in 'boat' for	rm	,	ic modes, oeca	ust	3
	(2			in 'chair' fo					
	(3			in 'crown' f					
	(4						- Joseph -		
	3.10		,,,	ces delige	uian	we	iter		
23	J. In ev is	a college of (ery newspape :	300 s ris r	tudents, ev ead by 60 :	ery s stude	tų nt:	dent reads 5 ts. S. The number	nev r of	vs paper and newspapers
	(1)	at least 30			(2)	ì	at most 20		
	(3)	exactly 25			(4)			L	
						•••	none of the a	OOV	re
24	. А g	as will appro	ach ic	leal behavi	our a	t:			
	(1)	Low temper	ature	and low p	ressu	ire			
	(2)	Low temper	ature	and high	press	ייינו	'e		
	(3)	High tempe	ratur	e and low	Dress	1164	•		
	(4)	High tempe	ratun	e and light	Pres	a.,	•		
25,	The %Sr fiss	number of 1 from the abs ion is :	eutro orptio	ons accom	panyi ' neut	ng tro	the formation n by ²³⁵ U follow	n o wed	of "Xe and by nuclear
	(1)	0	(2)	2	(3)	1	! (4)	3
26.	In a	website, the	'home	e' nage is ·					
	(1)	the best pag	e	· page 15 .	401				
	(3)	the first page			(2)		he last page		
	•				(4)		ne modest rec		
27.	To re	estart the con	ipute	r the follow	dna c	an	nbination of k		
	(1)	Del + ctrl	1—10 HAVE AND A		(2)	R	pritation of K	eys	is used:
	(3)	Esc + ctrl			(4)	C.	ackspace + cti trl + Alt + Del	î.	
					(')	_	ar - vir + Del		

(1)				e hardness of water is due to the presence of:										
	Chlorides of													
(2)					um and magn									
(3)						sıum								
(4)	Carbonates	of cal-	cium and s	odiun	n									
		n of l	nair when	exam	ined under m	icros	scope doest							
(1)	Medulla			(2)	Cortex									
(3)	Cuticle			(4)	Follicle									
· A	مسمعيد احتساحا													
10 H	- 5		antena matar	thro	uigh mouth									
100000	AMARY TERROSCOCIONAS CONTROL ACT			unc	ugn moun									
					n la									
(4)														
Whe	n a gas filled	inac	losed vesse	l is h	eated upto 1ºc	, it i	ncreases by							
0.4%	6. The initial	temp	erature of t	he ga	s was:									
	6. The initial 25°C		erature of the 250°C	he ga (3)		(4)	350°k							
(1)	25°C	(2)	250°C	(3)	250°k	(4)	350°k							
(1) The	25°C example of n	(2) on-ol	250°C	(3) ince i	250°k is :									
(1) The (1)	25ºC example of n Copper wire	(2) on-ol	250°C	(3) ance i (2)	250°k is : Carbon resis	tanc								
(1) The	25°C example of n	(2) on-ol	250°C	(3) ince i	250°k is :	tanc								
(1) The (1) (3)	25°C example of n Copper wire diode	(2) on-ol	250°C nmic resista	(3) ance i (2) (4)	250°k is : Carbon resis	tanc	e							
(1) The (1) (3)	25°C example of n Copper wire diode	(2) on-ol	250°C nmic resista	(3) ance i (2) (4)	250°k is : Carbon resis tungsten wir	tanc	e							
(1) The (1) (3) The	25°C example of n Copper wire diode	(2) on-ol	250°C nmic resista	(3) ance i (2) (4)	250°k is : Carbon resis tungsten wir	tanc	e							
(1) The (1) (3) The of:	25°C example of n Copper wire diode first law of th	(2) on-ol	250°C nmic resista	(3) ance i (2) (4) is con	250°k is: Carbon resis tungsten wir nserved with t	tance e he co	e							
(1) The (1) (3) The of: (1)	25°C example of n Copper wire diode first law of th no. of mole	(2) on-ol	250°C nmic resista	(3) ance i (2) (4) is cor (2)	250°k is: Carbon resis tungsten wir nserved with t	tance e he co	e							
(1) The (1) (3) The of: (1)	25°C example of n Copper wire diode first law of th no. of mole	(2) on-ol	250°C nmic resista	(3) ance i (2) (4) is cor (2)	250°k is: Carbon resis tungsten wir nserved with t	tance e he co	e							
(,) () () ()	(4) The not (1) (3) Asp (1) (2) (3) (4)	(4) Carbonates The cross-section not reveal: (1) Medulla (3) Cuticle Asphyxia' means (1) to struggle to strug	(4) Carbonates of cal- The cross-section of Inot reveal: (1) Medulla (3) Cuticle Asphyxia' means: (1) to struggle to con (2) to struggle to wal (3) to struggle to clim (4) to struggle to bre respiratory mover	(4) Carbonates of calcium and so The cross-section of hair when one reveal: (1) Medulla (3) Cuticle Asphyxia' means: (1) to struggle to consume water (2) to struggle to walk on legs (3) to struggle to climb on the mater (4) to struggle to breathe again respiratory movements	(4) Carbonates of calcium and sodium The cross-section of hair when examinot reveal: (1) Medulla (2) (3) Cuticle (4) Asphyxia' means: (1) to struggle to consume water thro (2) to struggle to walk on legs (3) to struggle to climb on the mount (4) to struggle to breathe against so respiratory movements	(4) Carbonates of calcium and sodium The cross-section of hair when examined under mot reveal: (1) Medulla (2) Cortex (3) Cuticle (4) Follicle Asphyxia' means: (1) to struggle to consume water through mouth (2) to struggle to walk on legs (3) to struggle to climb on the mountain (4) to struggle to breathe against some kind of ir respiratory movements	(4) Carbonates of calcium and sodium The cross-section of hair when examined under micros not reveal: (1) Medulla (2) Cortex (3) Cuticle (4) Follicle Asphyxia' means: (1) to struggle to consume water through mouth (2) to struggle to walk on legs (3) to struggle to climb on the mountain (4) to struggle to breathe against some kind of interference of the consumers of th							

34.		n ammeter is used in place of	a volt	meter, then we must connect
	with	the ammeter of a :		*
	{1}	low resistance in parallel	(2)	high resistance in parallel
	(3)	high resistance in series	(4)	low resistance in series
35.	Infr	ared radiations are detected by	γ:	
	(1)	spectrometer	(2)	pyrometers
	(3)	nanometer	(4)	photometer
36.	lden	tify the pair whose dimension	s are	equal:
	(1)	torque and work	(2)	stress and energy
	(3)	force and stress	(4)	force and work
37.	The	energy band gap is maximum	in :	
	(1)	metals	(2)	superconductors
	(3)	insulators	(4)	semi conductors
38.	'Coo	king gas containers are kept in	a lor	Tt moving with uniform and
		temperature of the gas molecu		
	(1)	increase		
	(2)	decrease		
	(3)	remain same		
	(4)	decrease for some, while incre	ease	for others

39. The north pole of a magnet is brought near a metallic ring as shown in the figure. The direction of induced current in the ring will be :

- (1) clock wise
- (2) anti-clock wise
- (3) first clock wise then anticlock wise
- (4) first anti-clock wise then clock wise
- 40. Pitch of a musical note depends on :
 - (1) its fundamental frequency only
 - (2) its harmonics only
 - (3) its amplitude only
 - (4) the instrument producing the pitch
- 41. Artificial radioactivity was discovered by:
 - (1) Pauli

(2) Ruther ford

(3) Soddy

- (4) Curie
- 42. Which of the following gas is insoluble in water?

 - (1) SO₂ (2) NH₃
- (3) H₂
- (4) CO₂

43. The compound x, in the reaction is:

X CH, Hg I Y hydrolysis Mg (OH) I + CH, COOH

(1) CH, CHO

(2) CO₂

(3) $(CH_3)_2CO$

(4) H CHO

::

44. The unit of molality is:

(1) mole/litre

(2) mole/kg

(3) mol-1/litre

(4) mole litre

45. Phenol is more acidic than :

(2) OH

 $(3) \quad \frac{C_2H_2}{(c)}$

(4) both (a) and (c)

46. The maximum number of electrons in p-orbital with n=5, m=1 is:

- (1) 6
- (2) 2
- (3) 14
- (4) 10

47. Solder is an alloy of:

(1) pb+zn+sn

(2) pb+zn

(3) pb+sn

(4) sn+zn

48.		Which of the following properties show gradual decrease with increase in atomic number across a period in the periodic table :										
	(1)			affinity	477	(2)	lonization		ial			
	(3)	Elec	tro ne	gativity	e	(4)	Size of ato	m				
49.		151	f 10 ⁻⁹	M Hcli			_	2.22	2.2			
	(1)	9		(2)	7	(3)	5	(4)	6.9			
50.	Dua	ıl natı	ure of	particle	es was pi	roposed	by:					
	(1)	Heis	enbe	rg		(2)	Lowry					
	(3)	De-I	Brogli	e		(4)	Schroding	er				
51	Whi	ch on	e ie n	ot a no	llutant ?)						
JI.		NO,		(2)		(3)	co,	(4)	со			
		2		` '	2		2	()				
					NO. 52	0.000 - 1	8 400					
				-					[A] is given below it. Of			
			- T	-	the corre			it, just	DC10# 10. G1			
	(1)	If bo	th A a	ınd R a	re true a	nd R is	correct expl	lanatio	n of A			
	(2)					at R is n	ot the corre	ct expla	anation of A			
	(3)			but R								
	(4)	II bo	tn A a	ınd R aı	re laise							
52.	[A] :	The	DNA	fingerp	rinting re	elies on	recombinan	t DNA	technology			
		•			ntification							
							and numb ic blue-prin		NA repeats			
		· ·			tement :	10 2			8			
	(1)	(2)	(3)	(4)								
					1	l 3			P.T.O.			

	[B] :	Lyso	somes	digest	food cont	ents of the	he phagosoi	mes
	Cho	ose tl	ne cor	rect sta	tement			1,
	(1)	(2)	(3)	(4)				
54.					n cytopla P and NA		converts so	me of the energy
		: Glu poun	7/	in glyc	olysis is	splitted	into two n	nolecules of 3-c
	Cho	ose ti	he cor	rect sta	tement			
	(1)	(2)	(3)	(4)				
55.	{A}:	Divis	sion of	extra c	ellular pr	otoplast	is called cy	tokinesis
	[B] :	This	cytok	inesis is	s due to d	elì plate	formation o	r by cleavage
	Cho	ose t	he cor	rect sta	tement :			•
	(1)	(2)	(3)	(4)				,
56 .	[A] :	Rate	of tra	ınspirat	lon is hig	h in low	wind velocit	ty '
	70			noves h s high	numid air	from ar	ound the k	eaf due to which
	Cho	ose t	he cor	rect sta	tement			
	(1)	(2)	(3)	(4)				*:
57.	[A] :	Ster	oid ha	rmones	are simi	lar to cho	olesterol in	structure
	[B]	Ster	oids o	ontain	ph e nanth	rene rin	g structure	
	Cho	ose t	he cor	rect sta	atement			
	(1)	(2)	(3)	(4)				
					•	A		

53. [A]: Lysosomes are also known as 'suicidal bags' of the cells

	[B] : The flower of Bouganvillia are largest among plant kingdom											
	Cho	ose	the co	rrect s	tate:	ment						
	(1)	(2)	(3)	(4)								
59.												ne ratio nt age ?
	(1)	20	years	(2)	2	2 years	(3)	24 ye	ars	(4)	26	years
60.	'Epi	dern	nis' is :									
	(1)	an	outer	skin la	уег	on fing	erprin	t				
	(2)	an	inner	skin la	ıyer	on fing	erprin	t				
	(3)	an	illdefir	ed rid	ge o	n finge	rprint					
	(4)	an	illogica	ıl imp	ressi	on on i	inger j	print				
61.	Sele	et tl	ne rela	ited w	ord f	rom th	e given	altern	atives	:		
	Con	nmai	nd : Or	der : :	Cor	fusion	: 7					
	(1)	Dis	cipline	;			(2)	Clari	ty			
	(3)	Ch	aos				(4)	Probl	em			
62.			CH is			or BLE	ACH,	then w	hich o	f the	follo	wing is
	(1)	BN	LOKZI	łМ			(2)	MAN	KYJLG			
	(3)	LO	BNHM	ΚZ			(4)	OBN	KZLHM	1		
63.	A man wears socks of two colours black and brown. He has altogether 20 black socks and 20 brown socks in a drawer. Supposing he has to take out the socks in the dark, how many must he take out to be sure that he has a matching pair?											
	(1)	3		(2)	2	0	(3)	39		(4)	6	
						1	5					P.T.O.

58. [A]: The colour of Flowers in Bouganvillia is due to the coloured bracts

In h	ow many diff	erent	ways car	n the let	ters of th	ie word "I"	KENDS.	De
arra	nged :					* 1		
(1)	720	(2)	120	(3)	740	(4)	5040	
	0.000	1000						
2								
		t he	spend or	n rice a	nd the a	amount h	e spent	on
		(2)	₹103	(3)	₹106	(4)	₹104	
(-)	1100	()	1100	(-,		(-)		
Froi	n among the	give	n alterna	atives, s	elect the	word wh	ich can	be
form	ned by using	the le	tters of t	he given	word:			
			DEC	LARATI	ON			
(1)	DECLINE			(2)	CLARIT	Y		
7.14074.0000	DONATION			(4)	DECOR			
(-)				\$ -7				
ln a	n examinatio	n it is	required	d to get 5	55% of th	ie aggrega	te marks	s to
pas	s. A student	gets 5	20 mark	s and is	declared	l failed by	5% mar	ks.
Wha	at are the ma	ximu	m aggreg	ate mar	ks a stud	lent can g	et?	
(1)	960			(2)	1250			
(3)	1040			(4)	Can no	t be deten	mined	
Qá.	animala ara	مددام	نم مینا	rola foois	na tha a	antra Cat	io between	
0.77				(-		ney. Dog.		
1570		er entires = extended (400			Monkey	,		
1000000					NAMES STATES	ī.		
(O)	DOE			(**)	rariot			
	arra (1) A m 12k the whe (1) From (1) (3) In a pass Who (1) (3) Six dog	arranged: (1) 720 A man bought 51 12kg of wheet at the total amoun wheat? (1) ₹108 From among the formed by using (1) DECLINE (3) DONATION In an examination pass. A student What are the man (1) 960 (3) 1040 Six animals are dog and rabbit. If of parrot. Who is (1) Cat	arranged: (1) 720 (2) A man bought 5kg of a 12kg of wheet at the arthe total amount he wheat? (1) ₹108 (2) From among the give formed by using the left (1) DECLINE (3) DONATION In an examination it is pass. A student gets 5 What are the maximum (1) 960 (3) 1040 Six animals are placed dog and rabbit. Hen is of parrot. Who is the left (1) Cat	arranged: (1) 720 (2) 120 A man bought 5kg of rice at the 12kg of wheet at the rate of ₹1 the total amount he spend of wheat? (1) ₹108 (2) ₹103 From among the given alternation formed by using the letters of the DEC (1) DECLINE (3) DONATION In an examination it is required pass. A student gets 520 mark What are the maximum aggregation (1) 960 (3) 1040 Six animals are placed in a cit dog and rabbit. Hen is between of parrot. Who is the left of rab (1) Cat	arranged: (1) 720 (2) 120 (3) A man bought 5kg of rice at the rate of 12kg of wheet at the rate of ₹18 per kg the total amount he spend on rice a wheat? (1) ₹108 (2) ₹103 (3) From among the given alternatives, s formed by using the letters of the given DECLARATION (1) DECLINE (2) (3) DONATION (4) In an examination it is required to get 3 pass. A student gets 520 marks and is What are the maximum aggregate marks what are the maximum aggregate marks (1) 960 (2) (3) 1040 (4) Six animals are placed in a circle facing dog and rabbit. Hen is between parrot of parrot. Who is the left of rabbit? (1) Cat (2)	arranged: (1) 720 (2) 120 (3) 740 A man bought 5kg of rice at the rate of ₹ 22 per 12kg of wheet at the rate of ₹18 per kg. What with the total amount he spend on rice and the a wheat ? (1) ₹108 (2) ₹103 (3) ₹106 From among the given alternatives, select the formed by using the letters of the given word: DECLARATION (1) DECLINE (2) CLARIT (3) DONATION (4) DECOR In an examination it is required to get 55% of the pass. A student gets 520 marks and is declared what are the maximum aggregate marks a student gets 520 marks and is declared what are the maximum aggregate marks a student gets 520 marks and is declared what are the maximum aggregate marks a student gets 520 marks and is declared what are the maximum aggregate marks a student gets 520 marks and is declared what are the maximum aggregate marks a student gets 520 marks and is declared what are the maximum aggregate marks a student gets 520 marks and is declared what are the maximum aggregate marks a student gets 520 marks and is declared what are the maximum aggregate marks a student gets 520 marks and is declared what are the maximum aggregate marks a student gets 520 marks and is declared what are the maximum aggregate marks a student gets 520 marks and is declared what are the maximum aggregate marks a student gets 520 marks and is declared what are the maximum aggregate marks a student gets 520 marks and is declared what are the maximum aggregate marks a student gets 520 marks and is declared what are the maximum aggregate marks a student gets 520 marks and is declared what are the maximum aggregate marks a student gets 520 marks and is declared what are the maximum aggregate marks a student gets 520 marks and is declared what are the maximum aggregate marks a student gets 520 marks and is declared what are the maximum aggregate marks a student gets 520 marks and is declared what are the maximum aggregate marks a student gets 520 marks and is declared what are the maximum aggregate marks a student gets 520 marks and is declared what are the ma	arranged: (1) 720 (2) 120 (3) 740 (4) A man bought 5kg of rice at the rate of ₹ 22 per kg. Then 12kg of wheet at the rate of ₹18 per kg. What was the dithe total amount he spend on rice and the amount he wheat? (1) ₹108 (2) ₹103 (3) ₹106 (4) From among the given alternatives, select the word wh formed by using the letters of the given word: DECLARATION (1) DECLINE (2) CLARITY (3) DONATION (4) DECOR In an examination it is required to get 55% of the aggregate pass. A student gets 520 marks and is declared failed by What are the maximum aggregate marks a student can get (1) 960 (2) 1250 (3) 1040 (4) Can not be determined to get 55% animals are placed in a circle facing the centre. Cat dog and rabbit. Hen is between parrot and monkey. Dog is of parrot. Who is the left of rabbit ? (1) Cat (2) Monkey	(1) 720 (2) 120 (3) 740 (4) 5040 A man bought 5kg of rice at the rate of ₹ 22 per kg. Then he bought 12kg of wheet at the rate of ₹18 per kg. What was the difference the total amount he spend on rice and the amount he spent wheat ? (1) ₹108 (2) ₹103 (3) ₹106 (4) ₹104 From among the given alternatives, select the word which can formed by using the letters of the given word: DECLARATION (1) DECLINE (2) CLARITY (3) DONATION (4) DECOR In an examination it is required to get 55% of the aggregate marks pass. A student gets 520 marks and is declared failed by 5% mar What are the maximum aggregate marks a student can get ? (1) 960 (2) 1250 (3) 1040 (4) Can not be determined Six animals are placed in a circle facing the centre. Cat is between dog and rabbit. Hen is between parrot and monkey. Dog is to the of parrot. Who is the left of rabbit ? (1) Cat (2) Monkey

						107/302/3			
69.			e odd one extracti		ecting	g biological evidences biologica			
	(1)	Blo	ood		(2)	Semen			
	(3)	Fit	per		(4)	Teeth			
70.			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	n, a statement is ct the one which i	_	n followed by four alternative st appropriate .			
		nsic	experts,			real investigative ability of the on system needs to be changed			
	Infe	ren	ces:						
	(1)	Th	e presen	t system of invest	igatic	on should be abolished			
	(2)								
	(3) If drastically changed, the investigation procols can increase the real ability of experts.								
	(4)	Rea	al ability	of forensic exper	ts ne	ed not be measured.			
71.	Find	the	e missinį	g number :					
	15		36	28					
	10		20	24					
	7		9	11					
	12		25	?					
	(1)	15			(2)	7			
	(3)	17			(4)	35			
72.	Sele	ct tl	he relate	d letters from the	giver	n alternative :			
				: DGLO : 2					
	- C- I	IVI "	IVE FIRE ()	: INTIAJ. F					

P.T.O.

(2) PSTW

(4) FJKO

17

(1) BFKL

(3) NRVZ

73.						nd C can do it e can A alone			
				. 		100 days			
74.	A mixture of glycerin and water contains 45% of glycerine. 35g of water by weight is added to 100g of such a mixture. What percentage of glycerine by weight will be there in a new mixture?								
	(1)	33	(2)	$33\frac{1}{3}$	(3)	$40\frac{20}{27}$	(4)	45	
75.	Find	the wrong n	umbe	r in the giv	en s	eries :			
	0, 3	, 9, 12, 36, 39	9, 42,	120, 360					
	(1)	12	(2)	39	(3)	42	(4)	360	
76.	Daya has a brother Anil. Daya is son of Chandra. Biman is Chandra's father. In terms of relationship what is Anil of Biman?								
		Grand – und	le			Grandson			
	(3)	Son-in-law			(4)	Brother			
77 .		15 ×(14) 10 = ?							
	(1)	$(14)^{150}$	(2)	(14)5	(3)	(14)25	(4)	$(14)^{1.5}$	
78.		ch number wing equatio		ld replace	both	the question	n ma	rks in the	
		$=\frac{36}{9}$							
	169 (1)	? 72	(2)	74	(3)	76	(4)	78	
	(-)		(=)		10)	70	(*)	70	
79.	If 24 X ?	X is a multip	ole of	a, where X	is a c	ligit, then wha	at is 1	the value of	
	(1)	6	(2)	3	(3)	9	(4)	4	
				1 2					

80. Trupti correctly remembers that the last time she went on leave was before the 16th but after the 11th. Sameer correctly remembers that the last time Trupti went on leave was after the 13th but before the 18th. On which day of month did Trupti definitely go on leave?

(1) 13th

(2) 14th

(3) Either 13th or 14th

(4) Either 14th or 15th

SECTION-B BIOLOGY

81.	With	hout exception all fungi are :							
	(1)	Chitin containing in their cel	l wall						
	(2)	Parasite							
	(3)	Saprophyte							
	(4)	Heterotroph							
82.	Wha	at is studied in forensic palyno	ology	?					
	(1)	Fossilised micro-organisms	(2)	Fossils					
	(3)	Pollens and spores	(4)	Dust					
	^	es which exists on an alterna	te e v r	oressions at a particular locus					
83.		nown as :	te exp	regardra at a particular towns					
	• •	Loci		100 m					
	(3)	Allele	(4)	Phenotype					
84.	Wh	ich of the following is a source	of Ly	ysergic acid ?					
	(1)	Claviceps purpurea	(2)	Psilocybe mexicanna					
	(3)	Lophophora williamsie	(4)	Argimone mexicanna					
			. J _L	alam lie et emperite ende in e					
85			na en	alaza lie at opposite ends in a					
	stra	aight line is known as :							
	(1)	Orthotropus type	(2)	Amphitropustype					
	(3)	Hemitropus type	(4)	Anatropus type					
		4							

86.	Carl	bon monoxide is harmful to human being as it :								
	(1)	Create ozone hole in stratosp	here							
	(2)	Is a major greenhouse gas								
	(3)	Is a major contributor of acid rain								
	(4)	Has higher affinity for haemo	Has higher affinity for haemoglobin in comparison to oxygen							
87.		dition where filament of stam	ens	are free but anther lobes are						
	fuse	ed is known as :								
	(1)	Adelphous	(2)	Monadelphous						
	(3)	Polyadelphous	(4)	Syngenesious						
88.	Trai	beculae, the characteristic of s	tem (of Selaginella, are modified :						
	(1)	Epidermis	(2)	Cortex						
	(3)	Endodermis	(4)	Pericycle						
89.	Nor	mally glomerular filtrate lacks	whic	th of the following?						
	(1)	Glucose	(2)	Sodium chloride						
	(3)	Cretinine	(4)	Albumin						
90.	Wa	ter vascular system is a charac	teris	tic feature of phylum :						
	(1)	Porifera	(2)	Eichinodermata						
	(3)	Coelenterata	(4)	Both A and B						

	(2)	To polymerise nucleotides during DNA replication							
	(3)	To cleave and modify DNA							
	(4)	To cleave primer from Okazaki fragments							
92.	Stuc	dy of cancer is called:							
	(1)	Conchology	(2)	Chirology					
	(3)	Carcinology	(4)	Carcinomatology					
	N		65 932						
93.	The	apparatus used to measure ra	ate of	transpiration is called :					
	(1)	Porometer	(2)	Potometer					
	(3)	Transpirometer	(4)	Evapometer					
	Б								
94.	Enz	yme enhances the rate of a ch	emic	al reaction by :					
	(1)	Raising activation energy							
	(2)	Lowering activation energy							
	(3)	Changing point of equilibrium	m						
	(4)	Generating ATP for the react	ion						
95.	Gyn	oecium represents ;							
	(1)	Ovaries with fused stigmas	(2)	Ovaries with fused styles					
	(3)	A single carpel	(4)	The whorl of carpels					

91. Normal function of restriction endonuclease in bacteria is :

(1) To excise and remove introns from hn RNA

96.	Tae	aenia solium takes its food through :								
	(1)	Body wall			(2)	Suckers				
	(3)	Mouth			(4)	Both A and H	3			
97.	Kah	na National I	Park i	s located in						
	(1)	Aaasam			(2)	Rajasthan				
	(3)	Madhya Pra	desh		(4)	Orissa		¥5		
98	Met	agenesis occı	ıre in	i i						
٥٠.	(1)	Hydra		86. .	(2)	Obelia				
	(3)	erent = e-particular and			(4)	Tublipora				
		•••						**		
99.						of a gymnosp	егm.	How many		
		mosome wou						20		
	(1)	16	(2)	32	(3)	48	(4)	64		
100	. Rap	hides are che	mical	lly made up	of:					
	(1)	Calcium pho	spha	ite	(2)	Calcium oxal	late			
	(3)	Calcium peo	tate		(4)	Calcium carl	onat	te		
101.	Extr	osomes are p	reser	nt in :						
				··· ··· /	(0)	Echinodermo	.+-			
	(1)	Protists			(2)		:18			
	(3)	Mollusca			(4)	Porifera				

102	.Whi	ch are the specialized structu	ires	to distinguish food from the						
	nonfood item in protozoan?									
	(1)	Teste bud	(2)	Senory cillia						
	(3)	Chemotoxic response	(4)	Quality of water						
103	.The	term orthomitosis refer to :								
	(1)	Symmetry of spindle								
	(2)	Spindle fiber that breaks dur	ing c	ell division						
	(3)	Joining of the spindle fiber								
	(4)	Movement of spindle fiber tov	vards	s the equatorial plate.						
104. In which of the following urochordates, no larval stage is found their life history:										
	(1)	Pyrosomida	(2)	Enterogona						
	(3)	Doliolida	(4)	Pieurogona						
105	.Whi	ch of the following reptiles has	s red	uced temporal arches :						
	(1)	Testdines	(2)	Rhynchocephalia						
	(3)	Squamata	(4)	Crocodilia						
106	.The	earliest possible evidence of g	nath	ostomes dates back to :						
	(1)	Precambrian period	(2)	Cambrian period						
	(3)	Mid-ordovician period	(4)	Silurian period						
				8						

	25		Р.Т.О.			
(3)	Mesozoic era	(4)	Cenozoic era			
(1)	Proterozoic era	(2)	Palaeozoci era			
111. The	e was considerable loss of fos	sils d	luring:			
(3)	Chi-square method	(4)	F-test			
A178 3531	t-test					
	iation from Hardy-Weinberg e	11 7 7	#-28			
110 De	intion from Haute Weight					
(4)	sex linked dominant lethal m	nutat	ions			
(3)	sex linked recessive lethal m	utati	ons			
(2)	autosomal dominant mutatio	ns				
(1)	autosomal recessive mutation					
109. c []	3 technique in <i>Drosophila</i> is u	sed t	o detect :			
	8ex		•			
(4)						
(3)	Y-chromosome determines s					
(2)	Presence of one or two X chi	romo	some determines the sex			
(1)	X : A ratio determines the se	x				
	ich type of primary sex deter nan ?	mina	tion mechanism is followed in			
(4)	(4) ABO blood group in human					
(3)	Sepia eye colour of Drosophila					
(2)	Turner syndrome					
(1)	Attached ear lobe					
107 . Wh	ich of the following example i	llustr	rates multiple allelism?			

112.	112. Definition of species under biological specie concept is based on :							
	(1)	Evolutionary	linea	iges	(2)	Morphological ty	pes	
	(3)	Reproductive	isola	ation	(4)	None of the above		
113.	113. Titration of a completely protonate base would produce how many pk						ie against a	
	(1)	One	(2)	Two	(3)	Three (4)	Four	
114.	Edm	an's reagent :	is pre	ferred for se	quer	nce determination	of a protein	
	beca	use during o	ne cy	cle of reacti	on it	:		
	(1)	Modifies and	clear	es only- N-	-term	inal amino acid r	esidue	
	(2)	2) Modifies and cleaves only C-terminal amino acid residue						
	(3)	Cleaves N-te	rmina	al amino aci	d res	idue in native for	m	
	(4)	Cleaves C-te	rmina	al amino aci	d res	idue in native for	m	
115.	Whi	ch hormone c	ontro	ls the relea	se of	milk after parturi	tion :	
	(1)	Vasopressin			(2)	Oxytocin		
	(3)	Prolactian			(4)	Relaxin		
	1 1				()			
116.	Calc	itonin is deriv	ed fr	om which o	f the	following gland :		
	(1)	Parathyroid			(2)	Pituitary		
	(3)	Thyroid			(4)	Pineal		

(1)	Testosterone	(2)	Aldosterone			
(3)	Progesterone	(4)	Corticosterone			
		halar	no-hypophysial portal system			
(1)	Pars distalis	(2)	Pars nervosa			
(3)	Mid-brain	(4)	Median eminence			
		follo	wing taxonomic category will			
(1)	Tribe	(2)	Cohort			
(3)	Family	(4)	Species group			
120. A taxonomic level concerned with the characterization and naming of species is known as:						
(1)	Alpha taxonomy	(2)	Beta taxonomy			
(3)	Gamma taxonomy	(4)	Omega taxonomy			
	(3) The is local (1) (3) In L. (3) (3) A tan spece (1)	(3) Progesterone The secondary plexus of the hypot is locateed in: (1) Pars distalls (3) Mid-brain In Linean hierarchy, which of the come between class and order? (1) Tribe (3) Family A taxonomic level concerned with (species is known as: (1) Alpha taxonomy	(3) Progesterone (4) The secondary plexus of the hypothalar is locateed in: (1) Pars distalis (2) (3) Mid-brain (4) In Linean hierarchy, which of the follocome between class and order? (1) Tribe (2) (3) Family (4) A taxonomic level concerned with the classecies is known as: (1) Alpha taxonomy (2)			

117. Hormone required for maintenance of pregnancy is :

SECTION-B CHEMISTRY

121	121. Electronic spectrum of $[Ti(H_2O)_6]$ cl, shows a shoulder at higher energy									
	of the main absorption band becasue of :									
	(1)	Jahn-Teller	Jahn-Teller distortion							
	(2)	Charge tran	sfer t	ranstion						
	(3)	Spin - orbit	coup	ling						
	(4)		Association of vibrational and rotational energy levels with electronic energy levels.							
122	Intra	aligand electr	onic	transitions	is all	owed for :				
	(1)	u-u	(2)	$g \rightarrow u$	(3)	$g \rightarrow g$	(4)	△ s=0		
123	Whi	ch of the follo	wing	gives shape	e of ti	he molecule/	comp	lex ?		
	(1)	Crystal field	theor	ry	(2)	Ligand field	theor	У		
	(3)	Molecular or	bital	theory	(4)	Valance bon	d the	ory		
124	2730 ener	6, 2916 and 29 gy for Co(H ₂ 0	933 K D);* is	J mix respects:	ctivel	$Co\{H_2O\}_6^{2+}$ any. The crystal		/8		
	(1)	121.2	(2)	131.2	(3)	101.2	(4)	111.2		
 125. In ESR spectrum of K₂[I_r Cl₆] each signal consists of fifteen signals because of: (1) Hyperfine coupling (2) Spin-orbit coupling 							ii sa			
	(3)	Super hyper	fine s	splitting	(4)	(Table)	250	-		

P.T.O.

126.	126. The nephelauxetic parameter is denoted by:							
	(1)	10Dq	(2)	υ	(3)	β	(4)	μ_{ϵ}
127	only inad as w (Δ'')	σ metal-lig	gand netal- II -oi	bonding (ligand bon	a) (ii) ding dditio	clahedra comp) involving fill (Δ') and (iii) in on to σ metal- $\Delta > \Delta' > \Delta''$ $\Delta > \Delta'' > \Delta''$	lled nvolv	π-orbitals ing filled -
128		is acid chara < Bel ₃ < B Br ₃ l			rihali	des increases	in t	the order
	(1)	Back bonding	ng inc	reases				
	(2)	Back bondir	ng dec	reases				
	(3)	Reorganizati	ion en	ergy for sp	² to s	p³ increases		
	(4)	σ bonding i	increa	ses				
129	ln w	hich of the fo	ollowi	ng 18-elect	ron r	ule is not stat	isfie	17
	(1)	Cr(CO) ₆	(2)	Fe(CO) ₅	(3)	$M_n(CO)_s$	(4)	Cr(C ₆ H ₆) ₂
130). Whi	ch of the folk	owing	has 4c-2e	bond	?		
		Al ₂ (C ₂ H ₅) ₆					(4)	Al ₂ Cl ₆

29

131. One mole of KBrO ₃ in bromate-bromide reaction produces :					
	(1)	Zero mole Br ₂	(2)	One mol Br ₂	
	(3)	two moles Br ₂	(4)	three moles Br ₂	
132.On dilutions potassium dichromate aqueous solution observes					
	deviation from Beer's law. This could be stopped if:				
	(1) The solution is made neutral				
	(2) The monochromatic light is used				
	(3) the solution is acidified				
	(4)	The solution is buffered			
133. Which of the following lamps used in atomic absorption					
	spec	ctroscopy ?			
	(1)	D_2 lamp	(2)	UV lamp	
	(3)	IR Lamp	(4)	Hollow cathode lamp	
134. If Ka for the reaction:					
$HCN + H_2O \rightleftharpoons H_3O^* + CN^-$					
	is 1×10^{-5} . The K_b could be:				
	(1)	1×10 ⁻¹⁴	(2)	1×10-9	
	(3)	0.1×10 ¹⁴	(4)	0.1×10 ⁹	

135. In complexometric titration of a metal with EDTA, Eriochrome Black-T indicator is not available. What would you suggest?

- Perform the titration with out using Eriochrome Black-T
- Perform the titration using an acid indicator, in unbuffered **(2)** condition
- (3) Wait until Eriochrome- black T is purchased
- The titration is not feasible in any condition (4)

136. The number of theoretical plates can be obtained from a chromatogram using the expression:

$$(1) \quad n = 61 \left(\frac{W}{t_R}\right)^2$$

$$(2) \quad n = 100 \left(\frac{t_R}{W}\right)^2$$

$$(3) \quad n = 16 \left(\frac{t_R}{W}\right)^2$$

(4)
$$n = 16 \left(\frac{W}{t_R}\right)^2$$

137. For the preparation of 2 ppm kel solution, the amount of Kel weiged to be:

- (1) 20 mg/L (2) $2.0 \mu\text{g/L}$ (3) 2.0 mg/L (4) 2.0 ng/L

138. In reversed phase chromatography, the stationary phase and mobile phase are, respectively:

- Polar, nonpolar
- (2) non-polar, polar
- (3) Zwittor ionic, non polar
- (4) liquid, liquid

139.Ce(iv) is an universal reagent for the redox titrations because it is :

(1) Cheap

(2) Highly soluble

(3) Highly stable

(4) easily available

140. Photochemical smog is due to oxidation of:

- (1) Aldehyde
- (2) Suspended particulate matters
- (3) Nitric oxide
- (4) Reactive hydrocarbons

141. The IUPAC name of the compound:

is:

- (1) Bicyclo [1.1,1] octanone
- (2) Bicyclo [2,2,0] octa -2,6 diene
- (3) Bicyclo [2,2,2] octa 2,6 dione
- (4) Bicyclo [2,2,1] octa -2,6 dione

142. The most suitable reagents to bring out the following transformation:

$$\rightarrow$$
OH \rightarrow \rightarrow OPh

- (1) PhCOcl and Pyridine
- (2) DCC and PhCOOH
- (3) PhBy, CO and Pd(PPh3)
- (4) Etooc-N=N-COOET, PPh3 and phCOOH

143. The constituent amino acids present in the following dipeptide, respectively are:

- (1) (R) -Asparagine and (S) -Leucine
- (2) (S)- Asparagine and (S)- valine
- (3) (R) Glutamine and (S) -Proline
- (4) (R) glutamine and (S) -iso Leucine

144. The major product formed, when phthaladdehyde is treated with NaoH is:

(1)
$$\bigcirc$$
 OH \bigcirc OH \bigcirc

145. The base promoted conversion of A to B involves:

- (1) Elimination unimoleculer conjugate Mechanism,
- (2) Elimination unimolecular Mechanism
- (3) Elimination Bimolecular Mechanism
- (4) Elimination Radical mechanism

146. The product (P) Formed in the following reaction is:

 $\bigcirc O \qquad \bigcirc O \qquad (P)$

(1) OH

(2) OH

(3)

(4) OH

147. Which of the following is a cis-isomer ?

(1) CH₃

(2) CH.

(3) H CH,

148. Pick out the correct match

Reduction

- (1) demesne Reduction
- (2) Wolf-kishner Reduction
- (3) Meerwein-Pondorf-verley
- (4) Rosenmund's Reduction

Code:

- (1) A-(i), B-(ii), C-(iv), D-(iii)
- (3) A-(ii), B-(i), C-(iii), D-(iv)

Reducing Agent

- (i) NH2NH2/OH
- (ii) zn/Hg1 Hcl
- (iii) Aluminium Iso proxide
- (iv) H2 Pd/BaSO4, Quinoline
- (2) A-(iv), B-(iii), C-(i), D-(ii)
- (4) A-(iv), B-(i), C-(ii), D-(iii)
- 149. The major Product formed in the following reactions is:

(i)
$$\begin{array}{c|c} & COO_{\text{Et}} \\ \downarrow & 180^{\circ}\text{C} \\ \downarrow & & \\ \hline & COO_{\text{Et}} \end{array}$$
 (P)

(ii)
$$COO_{st}$$

$$COO_{st}$$

$$COO_{st}$$

$$COO_{st}$$

$$COO_{st}$$

(1)
$$P = S$$
 $COO \epsilon t$
 $COO \epsilon t$
 $COO \epsilon t$

(2)
$$P = CH_3 COO \epsilon t$$
 $COO \epsilon t$ $COO \epsilon t$ $COO \epsilon t$

(3)
$$P = CH_3 COO_{Et}$$
 COO_{Et} COO_{Et}

(4)
$$P = S \downarrow_{COOEt}^{COOEt}$$
, $Q = \downarrow_{COOEt}^{COOEt}$

150. In the reaction given below:

Q
$$\rightleftharpoons$$
 D' glucose $\xrightarrow{Acetone}$ P

PhCH(OMe)₂ D' glucose \xrightarrow{H} P

(1) \rightleftharpoons and Ph OH

(Q) (Q)

$$(2) \qquad (P) \qquad (P) \qquad (P)$$
and
$$(P) \qquad (P) \qquad (P)$$

151. To prepare a saturated solution of silver compound with highest concentration of silver ion, which one of the following compounds will be the best?

$$K_{\rm sp}\left({\rm AgCl}\right) = 1.8 \times 10^{-10}, K_{\rm sp}\left({\rm AgBr}\right) = 5.0 \times 10^{-13}, K_{\rm sp}\left({\rm Ag}_2{\rm CrO}_4\right) = 2.4 \times 10^{-12}$$

(1) AgCl

(3) Ag₂CrO₄

- (2) AgBr(4) None of these
- 152.0.1 mole of CH_3NH_2 ($K_b = 5 \times 10^{-4}$) is mixed with 0.08 mole of HCL and diluted to 1L. What will be the H+ concentration in the solution?
 - $8.0 \times 10^{-2} M$

(2) $8.0 \times 10^{-11} \text{M}$

 $1.6 \times 10^{-11} \text{ M}$ (3)

- (4) 8.0 ×10-5
- 153. N2 and H2 in 1:3 molar ratio are heated in a closed container having a catalyst. When the following equilibrium N2(g) + H2(g) \Leftrightarrow 2NH3(g) is attained, the total pressure is 10 atm and mole fraction of NH3 is 0.6. The equilibrium constant Kp for dissociation of NH3 is:
 - (1) 1.33 atm⁻²
- (2) 1.33 atm² (3) 0.75atm²
- (4) 0.75atm⁻²

154	. Wh wat mo:	or appointing	ezing p g the ac	oint of a	a solution e 90% ion	o containing sized ? (kf fo	s 8.1 g f r water	IBr in 100g = 1.86 k kg
	(1)	0.85°C	(2)	O°C	(3)	-3.53°C	(4)	-0.35°C
	The		iciency	n. Both is 60%	Ni and H	mac are fam		containing he cathode. l deposited

- (1) 7.883g (2) 3.941g (3) 5.91g (4) 23.645g
- **156.** KCl crystallizes in the same type of lattice as does NaCl. Given that $\frac{r_{Na}}{r_{cr}} = 0.55$ and $\frac{r_K}{r_{cr}} = 0.74$. Calculate the ratio of the side of the unit cell for KCl to that of NaCl.
 - (1) 1.1226 (2) 0.0891 (3) 1.414 (4) 0.414
- 157. The density of the gold is 19g/cm³. If 1.9 ×10⁻⁴g of gold is dispersed in 1 L of water to give a sol having spherical gold nano-particles of radius 10nm, then the number of gold particles per mm³ of the sol will be:
 - (1) 1.9×10^{12} (2) 6.3×10^{14} (3) 6.3×10^{10} (4) 2.38×10^{6}
- 158.The number of α and β particles emitted in the nuclear reaction $_{90}Th^{228}$ \rightarrow $_{81}Bi^{212}$ is :
 - (1) 4α and 1β (2) 8α and 1β (3) 3α and 7β (4) 4α and 7β

- 159. Standard entropy of X_2 , Y_2 and XY_3 are 60, 40, and 50 JK⁻¹, respectively. For the reaction $\frac{1}{2}X_2 + \frac{3}{2}Y_2 = XY_3$, $\Delta H = -30$ kJat equilibrium, the temperature will be:
 - (1) 500 K
- (2) 750 K
- (3) 1000 K
- (4) 1250 K
- 160. The translational molecular partition function of a He atom at 298 K in a container of volume 1.00 m³ is:
 - (1) 2.25×10^{28}

(2) 5.5×10^{29}

(3) 7.75×10^{30}

(4) 1.25×10^{31}

SECTION-B MATHEMATICS

161. The general term of the expression $\frac{x^2 + 7x + 3}{x^2 + 7x + 10}$ when expanded in ascending powers of X is:

(1)
$$\left(-1\right)^{r} \frac{3}{7} \left[\frac{1}{2^{r+1}} - \frac{1}{5^{r+1}} \right] x^{r}$$

(1)
$$\left(-1\right)^{r} \frac{3}{7} \left[\frac{1}{2^{r+1}} - \frac{1}{5^{r+1}} \right] x^{r}$$
 (2) $\left(-1\right)^{r} \frac{7}{3} \left[\frac{1}{5^{r+1}} - \frac{1}{2^{r+1}} \right] x^{r}$

(3)
$$\left(-1\right)^{r} \frac{11}{3} \left[\frac{1}{2^{r+1}} + \frac{1}{5^{r+1}} \right] x^{r}$$
 (4) $\left(-1\right)^{r} \frac{7}{11} \left[\frac{1}{5^{r+1}} + \frac{1}{2^{r+1}} \right] x^{r}$

(4)
$$\left(-1\right)^{r} \frac{7}{11} \left[\frac{1}{5^{r+1}} + \frac{1}{2^{r+1}} \right] x^{r}$$

162. If x, y and z are real and different and :

$$u = x^2 + 4y^2 + 9z^2 - 6yz - 3zx - 2xy$$

then u is always:

(1) non-negative

(2) zero .

(3) non-positive

- (4) None of these
- 163. If a, b and c are three positive real numbers, then minimum value of the expression $\frac{b+c}{a} + \frac{c+a}{b} + \frac{a+b}{c}$ is:
 - (1) 1

(2) 2

(3)3

(4) None of these

164. If $a \neq b \neq c$, one value of x which satisfy the equation:

$$\begin{vmatrix} 0 & x-a & x-b \\ x+a & 0 & x-c \\ x+b & x+c & 0 \end{vmatrix} = 0$$

is given by:

- $(1) \quad \mathbf{x} = \mathbf{a}$
- $(2) \quad x = b$
- (3) x = c (4) x = 0

165. The value of the determinant

$$\begin{vmatrix} x+1 & x+2 & x+4 \\ x+3 & x+5 & x+8 \\ x+7 & x+10 & x+14 \end{vmatrix}$$

is :

(1) -2

(3) 2

(2) $x^2 + 2$ (4) $x^3 + 6x^2 + 70$

166. If x, y, z are all different and if:

$$\begin{vmatrix} x & x^2 & 1 + x^2 \\ y & y^2 & 1 + y^2 \\ z & z^2 & 1 + z^2 \end{vmatrix} = 0$$

then xyz is equal to:

- (1) 1
- (2) -1 (3) 2
- (4) 3

167. If the roots of $ax^2 + bx + c = 0$ are in the ration m: n then:

- (1) $mna^2 = (m + n) c^2$
- (2) $mnb^2 = (m + n) ac$
- (3) $mnb^2 = (m + n)^2$ ac
- (4) None of these

168. For the equation $x^2 + |x| - 6 = 0$

- (1) there is only one root
- (2) the sum of roots is +1
- (3) the sum of roots is 0
- (4) the product of roots is +4

169. If the roots of:

$$(x-A)(x-B) + (x-B)(x-C) + (x-C)(x-A) = 0$$

Where A,B,C, are real numbers are equal then

 $(1) \quad A = B = C$

- (2) A + B + C = 0
- (3) $B^2 4AC = 0$
- (4) None of these

170. If α, β, γ are the roots of $x^3 + ax^2 + b = 0$ then $\begin{vmatrix} \alpha & \beta & \gamma \\ \beta & \gamma & \alpha \\ \gamma & \alpha & \beta \end{vmatrix}$ is equal to:

- (1) $-a^3$
- (2) $a^3 ab$ (3) a^3
- (4) $a^3 3b$

171. The expansion of $\frac{2 a \sin \theta}{1 - 2 a \cos \theta + a^2}$ in a series of ascending powers of a is:

- (1) $2 \operatorname{a} \sin \theta + 2a^2 \sin 2\theta + 2a^3 \sin 3\theta + ---- ad \inf$
- (2) $1+2a \sin \theta + 2a^2 \sin 2\theta + 2a^3 \sin 3\theta + ---- ad inf.$
- (3) $1+2a\cos\theta + 2a^2\cos 2\theta + 2a^3\cos 3\theta + ---- ad inf.$
- (4) None of these

172. The expansion of $\frac{1+a\cos\theta}{1+2a\cos\theta+a^2}$ in an infinite series is :

- (1) $1+a \cos \theta + a^2 \cos 2 \theta + a^3 \cos 3\theta + \dots$ adinf.
- (2) $1-a \cos \theta + a^2 \cos 2\theta a^3 \cos 3\theta + \dots$ adinf.
- (3) $1+a \sin \theta + a^2 \sin 2 \theta + a^3 \sin 3 \theta + adinf.$
- (4) None of these

173. The expansion of $\tan^{-1}\left(\frac{a\sin\theta}{1-a\cos\theta}\right)$ in an infinite series is :

- (1) $a \sin \theta + \frac{1}{2} a^2 \sin 2\theta + \frac{1}{3} a^3 \sin 3\theta + \dots$ adinf.
- (2) $a \cos \theta + \frac{1}{2} a^2 \cos 2\theta + \frac{1}{3} a^3 \cos 3\theta + \dots$ adinf.
- (3) $a \sin \theta \frac{1}{2} a^2 \sin 2\theta + \frac{1}{3} a^3 \sin 3\theta + \dots$ adinf.
- (4) $a \cos \theta \frac{1}{2} a^2 \cos 2\theta + \frac{1}{3} a^3 \cos 3\theta + \dots$ adinf.

174. The expansion of $\frac{1}{2} \tan^{-1}(\sin \alpha \tan 2\beta)$ in an infinite series is :

- (1) $\cos \alpha \tan \beta + \frac{1}{3} \cos 3\alpha \tan^3 \beta + \frac{1}{5} \cos 5\alpha \tan^5 \beta + \dots$ adinf.
- (2) $\sin \alpha \cot \beta + \frac{1}{3} \sin 3 \alpha \cot^3 \beta + \frac{1}{5} \sin 5 \alpha \cot^5 \beta + \dots$ adinf.
- (3) $\sin \alpha \tan \beta + \frac{1}{3} \sin 3\alpha \tan^3 \beta + \frac{1}{5} \sin 5\alpha \tan^5 \beta \dots + \dots = a \sin f$.
- (4) None of these

175. The expansion of $\frac{1-a^2}{1-2 a \cos \theta + a^2}$ in a series of ascending powers of a is:

- (1) $1+2a\cos\theta + 2a^2\cos2\theta + 2a^2\cos3\theta + \dots$ adinf.
- (2) 1+2a + 2a² +2a³+.....adinf.
- (3) $1+2a \sin \theta + 2a^2 \sin 2\theta + 2a^3 \sin 3\theta + \dots = a \sin \theta$
- (4) None of these

176. Three forces P, Q, R act along the sides BC, CA, AB of a triangle ABC respectively. If their resultant passes through the circumcentre of the triangle ABC then.

- (1) $P \sec A + Q \sec B + R \sec C = 0$
- (2) $P \cos A + Q \cos B + \cos C = 0$
- (3) P sin A + Q sin B+ R sin C =0
- (4) P cosec A + Q cosec B + R cosec C = 0

177. If the algebraic sum of the moments of a system of Coplanar forces in zero about each of the points (2,0), (0,3) and (2,3) then the system can be reduced to a force R and a couple G such that:

- (1) R = 0 and $G \neq 0$
- (2) $R \neq 0$ and G = 0
- (3) R = 0 and G = 0
- (4) $R \neq 0$ and $G \neq 0$

178. If the algebraic sum of the moments of a system of Coplanar forces is
zero about each of the points (0,1) and (1,2) and the algebraic sum of
the resolved parts of the forces along x-axis is also zero then the
system can be reduced to a force and a couple G such that :

(1) $R \neq 0, G \neq 0$

(2) R = 0, G = 0

(3) $R \neq 0, G = 0$

(4) $R = 0, G \neq 0$

179. Four equally uniform rods one jointed to form a rhombus ABCD, which is placed in a vertical plane with AC vertical and A resting on a horizontal plane. The rhombus is kept in the position in which <BAC is θ by a light string joining B and D. If w is the weight of a rod then the tension in the string is:

(1) 4 W tan θ

(2) 4 W cot θ

 $2 w \tan \theta$ (3)

(4) 2 w cot θ

180. If a particle at the point (2,3) is displaced to the point (3,4) under the application of the force (2,3) then the work done by the force during the displacement in the units of work is:

(1) 2

3 (2)

(3) 4

(4) 5

181. If a string of length 10 units ad weight 40 units is hanging in the form of a calenary y=cos h(x) then the tension at the point (0,1) is:

45

(1) 4 units

(2) 20 units (3) 10 units

(4) 2 units

1 82. If winto	COLIA	ne centre and dius a, in the	l G is the form of a	centre d quadra	of gravity ant of a cir	of a unifo	rm OG i	circular is equal
(1)	$\frac{2a}{\pi}$	(2)	$\frac{\left(\sqrt{2}\right)a}{\pi}$	(3)	$\frac{\left(2\sqrt{2}\right)a}{\pi}$	(4)	<u>a</u> 2π	

- 183. If a particle is executing a simple harmonic motion in a straight line then its average acceleration (in magnitude) is obtained by multiplying its maximum value by :
 - (1) $\frac{1}{\pi}$ (2) π (3) $\frac{2}{\pi}$ (4) $\frac{\pi}{2}$
- 184. If the time in which a projectile reaches a point p in its path is 10 seconds and the time from P till it reaches the horizontal plane through the point of projection is 15 seconds then the height of the point P above the horizontal plane is:
 - (1) 25g units (2) 50g units (3) 75 g units (4) 150 g units

Where g is the acceleration due to grarity.

- 185. If a heavy particle of mass m in slides down a smooth cycloid starting from rest at the cusp the axis being vertical and vertex downwards then the reaction of the curve on the particle when it arrives at the vertex is:
 - (1) mg (2) $\frac{1}{2}$ mg (3) 2mg (4) $\frac{3}{2}$ mg

Where g is the acceleration due to grarity.

186. If $\frac{dy}{dx}$ + 2y tan x = sin x and $y\left(\frac{\pi}{3}\right)$ = 0 then, the maximum value of y is:

 $\{1\}$ $\frac{1}{8}$

(2) -1

(3) $-\frac{1}{2}$

None of these (4)

187. The integrating factor of the differential equation

$$x^2y dx - (x^3 + y^3) dy = 0$$

15

(1) $-1/y^4$ (3) $-1/x^4$

188. Particular integral of the differential equation $\frac{d^2y}{dx^2} - \frac{dy}{dx} = (x^2 + 2x + 4)$ is:

- (1) $-\left(\frac{x^3}{3} + 2x^2 + 8x + 8\right)$ (2) $\frac{x^3}{3} + 2x^2 + 8x + 8$

(3) $x^3 + x^2 + x + 1$

(4) None of these

189. The solution of differential equation $\frac{d^4y}{dx^4} + \frac{d^2y}{dx^2} = 0$ with intial conditions y(0) = y'(0) = y''(0) = 0, y'''(0) = 1 is :

(1) $y = 1 + \sin x$

 $(3) \quad y = x + \sin x$

(4) $y = x + \cos x$

:

Ľ.

190. The particular integral of the differential equation

$$\frac{d^2y}{dx^2} - 5 \frac{dy}{dx} + 6y = e^x \cos x$$

(1)
$$\frac{e^x}{20}$$
 (3 sin 2x + cos 2x) (2) $-\frac{e^x}{20}$ (3 sin 2x + cos 2x)

(2)
$$-\frac{e^x}{20}$$
 (3 sin 2x + cos 2x)

(3)
$$e^x (\sin 2x + \cos 2x)$$

(4)
$$e^x (\sin 2x - \cos 2x)$$

191. The general solution of the differential equation $\frac{d^2y}{dx^2} = \left[1 - \left(\frac{dy}{dx}\right)^2\right]^{\frac{2}{3}}$ is:

(1)
$$y = \cos h (x+c_1) + c_2$$

(2)
$$y = c_2 - \cos(x+c_3)$$

(1)
$$y = \cos h (x+c_1) + c_2$$
 (2) $y = c_2 - \cos (x+c_1)$
(3) $y = \sin h (x+c_1) + c_2$ (4) $y = \sin (x+c_1) + c_2$

(4)
$$y = \sin(x + c_1) + c_2$$

192. The general solution of the differential equation $y\frac{d^2y}{dx^2} - \left(\frac{dy}{dx}\right)^2 + y^2 \log x = 0 \text{ is } :$

(1)
$$\log y = c_1 e^x + c_2 e^{-x}$$

(2)
$$\log y = c$$
, $\sin x + c$, $\cos x$

(3)
$$y = \log (c_1 e^x + c_2 e^{-x})$$

(1)
$$\log y = c_1 e^x + c_2 e^{-x}$$
 (2) $\log y = c_1 \sin x + c_2 \cos x$
(3) $y = \log (c_1 e^x + c_2 e^{-x})$ (4) $y = \log (c_1 \sin x + c_2 \cos x)$

193. The integral equation corresponding to the initial value problem

$$\frac{d^2y}{dx^2} + y = 0$$
, y (0) = y'(0) = 0 is :

(1)
$$y(x) = -\int_{0}^{x} (x-t)y(t)dt$$
 (2) $y(x) = \int_{0}^{x} (x+t)y(t)dt$

(2)
$$y(x) = \int_{0}^{x} (x+t)^{2}y(t) dt$$

(3)
$$y(x) = \int_{0}^{\infty} (x+t)y(t) dt$$
 (4) None of these

- 194. The solution of the integral equation $y(x) = \frac{1}{1+x^2} \int_0^x \frac{t}{1+x^2} y(t) dt$ is:
 - (1) $y(x) = (1+x^2)^{-\frac{1}{2}}$
- (2) $y(x) = (1+x^2)^{-\frac{1}{2}}$
- (3) $y(x) = (1+x^2)^{\frac{1}{2}}$

- (4) None of these
- 195. The integral equation $y(x) = \int_{x}^{x} (x-t)y(t)dt \int_{x}^{t} x(1-x)y(t)dt$ is corresponding to the boundary value problem :
 - (1) y'' + y = 0, y(0) = y'(0) = 0 (2) y'' + y = 0, y(0) = y(1) = 0

 - (3) y'' + y = 0, y(0) = y(1) = 0 (4) y'' y = 0, y(0) = y'(0) = 1
- 196. The laplace transform of $t^{1/3}$ is :
 - (1) $\left(\frac{\pi}{s}\right)^{s}$

 $(2) \quad (\pi s)^{\frac{1}{2}}$

(3) $\left(\frac{s}{r}\right)^{X}$

- (4) πs
- 197. If the laplace transform of $\cos(at)$ is $s/(s^2+a^2)$ then the laplace transform of t cos(at) is:
 - (1) $\frac{s-a}{(s^2+a^2)^2}$

(2) $\frac{s^2 - a^2}{\left(s^2 + a^2\right)^2}$

(3) $\frac{s^2 - a^2}{s^2 + a^2}$

 $(4) \quad \frac{s^2}{s^2 - s^2}$

198. The inverse laplace transform of $\frac{s}{(s^2+1)(s^2+4)}$ is:

- (1) $\frac{1}{3}(\cos t \cos 2 t)$
- (2) $\cos t \cos 2t$
- (3) $\frac{1}{3} (\sin t \sin 2 t)$

(4) $\sin t - \sin 2t$

199. If the laplace trans from of f(t) is F(s) then the laplace transform of f(t-a)u(t-a) is :

(1) $e^{-as} F(s)$

(2) em F(s)

(3) e-44

(4) F(s-a)

200. If the laplace transform of y(t) is y(s) then application of laplace transform in initial value problem $y'' + y = \sin 3t$, y(0) = y'(0) = 0 results as:

- (1) $y(s) = \frac{3}{(s^2+1)(s^2+9)}$
- (2) $y(s) = \frac{5}{(s^2+1)(s^2+9)}$
- (3) $y(s) = \frac{1}{s^2+1}$

(4) $y(s) = \frac{1}{s^2+9}$

SECTION-B

PHYSICS

- 201.A car travels 90.0 meters north in 15.0 seconds. Then the car turns around and travels 40.0 meters south in 5.0 seconds. What is the magnitude of the average velocity of the car during this 20.0 seconds interval?
 - (1) 2.5 m/sec

(2) 5.0 m/sec

(3) 6.5 m/sec

(4) 7.0 m/sec

202. Radiocarbon is produced in the atmosphere as a result of :

- (1) collision between fast neutrons and nitrogen nuclei present in the atmosphere
- (2) action of ultraviolet light from the sun on atmospheric oxygen
- (3) action of solar radiations particularly cosmic rays on carbon dioxide present in the atmosphere
- (4) lightning discharge in atmosphere

Direction (Questions No. **203–204**) An electron and a positron, each of mass 9.1×10–31 kilogram, are in the same general vicinity and have very small initial speeds. They then annihilate each other, producing two photons.

203. What is the approximate energy of each emerging photon?

(1) 0.511 MeV

(2) 2.032 MeV

(3) 1.067 MeV

(4) 3.126 MeV

204. Wh	at is the angl	e betv	veen the pa	ths	of the emerging	g pho	otons ?		
(1)	0°	(2)	900	(3)	1400	(4)	180°		
205 .Hyd	irogen atom e	xcites	s energy lev	el fro	om fundament	al sta	ate to n =3.		
	mber of spects								
(1)	2	(2)	4	(3)	3	(4)	5 '		
206.Wh	ich rectifier re	quire	s four diode	es ?					
(1)	Half - wave	voltag	e doublers	(2)	Full - wave ve	oltag	e doublers		
(3)	Full - wave			(4)					
207 .Sun	n of these is u	ınity :							
(1)	Reflectivity +	Tran	smitivity						
(2)	Reflectivity +	Refra	activity						
(3)	Reflectivity + Refractivity + Transmitivity								
(4)	Above all				κ				
208.The	line integral (ofu=	yi - xj + zk	aro	und a circle of	radio	is D in the		
xy -	plane with ce	ntre a	at the origin	ı is e	qual to :	·auri	18 K III GIG		
(1)	0	(2)	$2\pi R^2$		STATE OF THE STATE	(4)	πR ² /4		
209.Sky	looks blue be	cause	the sun lig	tht is	subjected to :				
(1)	Rayleigh sca			(2)	Compton scat		g		
(3)	Dispersion			(4)	Refraction		-		
52									

	(1)	0.693	(2)	2/0.693	(3)	4/0.693	(4)	0.693/4	
211	. A pl	nysically reas	onabl	le wave fun	ction	$\psi(x)$, for a	one-d	limensional	
	syst	em must :							
	(1)	be defined a	t few	points in s	pace				
	(2)	be continuo	us at	some point	s in s	space			
	(3)	be single va	lued						
	(4)	obey all the	const	traints liste	d abo	ove			
212	.The	laws of phot	o elec	tric emissic	n:				
	(1)	are explaine							
	(2)	state that e	state that emission is inversely proportional to the intensity of						
		the inciden							
	(3)	State that increasing the intensity of the incident light increases							
			the kinetic energy of the photoelectrons						
	(4)	state that in	creas	sing the free	quenc	y of the incid	ent lig	ht increases	
		the kinetic	energ	y of the ph	otoel	ectrons			
						.0.1		as I P circuit	
21	3. An	alternating e	mf V=	6Cos 100t	is ap	pued across	a serre	f the current	
	of 3	3 Mh inducta	nce at	nd 4 12 resi	stanc	e. The ampa	tuue o	i die editein	
	is :			Jr. (2008)			(4)	1.8A	
	(1)	0.6A	(2)	1.2A	(3)	1.4 A	(4)	1.07	
				5	3		ž)	P.T.O.	

210. Out of 10.0 mg of a radioactive sample, 1.25 mg remains un-decayed

after 6 hours. The mean life of the sample in hours is :

	(1)	4	(2)	12	(3)	16	(4)	8
215		nd produced						
		e the same so						
		speed of sour					ne ma	ximum and
	mini	imum distanc	es be	tween the t	wo p	ersons?		
	(1)	1.8km, 0.15	km		(2)	2.2km, 0.2	0km	
	(3)	2.8 km, 0.25	km		(4)	3.3 km, 0.3	00 km	
216	.The	image produc	ed by	a concave	lens	is :	4.	
	(1)	always virtua	al and	l enlarged			ě	
	(2)	always virtue	al and	t reduced in	size			
	(3)	always real						
	(4)	sometimes re	eal, so	ometimes vi	rtual	r.	: 1	
217.	.lf a	particle move	s in a	a plane so ti	hat it	s position is	descr	ibed by the
L		tions x = A co						•
	(1)	moving with						
	(2)	moving with	varyi	ng speed ald	ng a	circle	7	
	(3)	moving with	const	ant acceler	ation	along a stra	iight li	ne
	(4)	oscillating be	ack ar	nd forth alo	ng a	straight line		

214. How many truth table entries are necessary for a four-input circuit?

218.	Vari	ous types of o	ance	r are treated	i by :	(¥
	(1)	Cobalt -60			(2)	Strontium -9	0	
	(3)	Carbon -14			(4)	Nickel -63		
219	. Iden	tify the logic	opera	tion perfort	ned l	by the circuit (given	below:
					-	—		
	(1)	NOT	(2)	NAND	(3)	OR	(4)	NOR
220	.Osc	illators opera	te on	the princip	le of	:		
	(1)	Positive feed	back		(2)	Negative feed	back	
	(3)	Attenuation			(4)	All of above		
221						the hydrogen	aton	n is a _o . The
	radi	us of the sec	ond (1	next higher	orbi	t will be:		
	(1)	$2a_0$	(2)	4a _o	(3)	6a ₀	(4)	8a ₀
222	.Refi	active index	of me	aterials is a	ррго	ximately equa	l to :	square root
	of:							
	(1)	relative perr	nittivi	ity				
	(2)	relative permeability						
	(3)	product of r	elativ	e permittivi	ty an	d relative per	neab	ility
	(4)	susceptibili	ty					
				55				P.T.O.

223 .Sp	litting of spectra	l lines when	atoms	S are subjected to				
223. Splitting of spectral lines when atoms are subjected to strong electric feild is called:								
(1)	1) Zeeman effect (2) Stark effect							
(3)	Photo electric	effect	(4)					
224.Wh	ich dominates t	he atmosphe	re of \	Venus ?				
(1)	Nitrogen		(2)					
(3)	Oxygen		(4)					
225.The	electrical entity ty :	inductance	can b	oe compared to the mechanical				
(1)	Energy		(2)	Impulse				
(3)	Momentum		(4)	Inertia				
226.From	n the following, h will produce r	pick out the	mos	st suitable energy of neutrons				
	0.04eV (2)							
227. The p	henomenon wh	ere the freque	ency o	of waves are compressed when				
rate F	ody emitting th	ie waves is r	noving	g towards you and stretched				
when	the body emitti	ing the waves	is mo	oving away from you?				
(1)	nterference			Doppler effect				
(3) 1	Blackbody radia	tion	20020	Parallax				

228. In the spectrum of hydrogen atom, the ratio of the longest wavelength								
in Lyman series to the longest wavelength in the Balmer series is								
1) :	5/27	(2)	4/9	(3)	1/93	(4)	3/5	
229.An ideal differential amplifiers common mode rejection ratio is :								
1)	Infinite			(2)	Zero			
3}	Unity			(4)	Undetermin	ed		
						invert	ed image of	
he s	ame size is	btair	ied, using	a conv	rex lens ?			
1)	Between O a	ınd F		(2)	at 2F			
(3)	at infinity			(4)	at F/2			
The	number of n	on-ze	ro rows in	an ec	hlon form is	called	?	
(1)	Reduced ecl	hlon :	form	(2)	Rank of a matrix			
(3)	Conjugate o	fam	atrix	(4)	Cofactor of a matrix			
232. The longest wavelength X-ray that can undergo Bragg diffraction in a								
crys	tal for a give	n tam	my or plan	ies or s	pacing d is .			
(1)	d/4	(2)	d/2	(3)	2d	(4)	4d	
			_	_			Р.Т.О.	
	n id he s the the the the the the the th	Lyman series to 5/27 5/27 n ideal differenti Infinite Unity Where should an he same size is out of the same of not on the number of not on the longest wave crystal for a given	Lyman series to the 5/27 (2) ideal differential and Infinite Unity Where should an object he same size is obtain Between O and F at infinity The number of non-ze Reduced echlon in Conjugate of a manual or a given fame Crystal for a given fame	Lyman series to the longest with 1 5/27 (2) 4/9 In ideal differential amplifiers of 1 Infinite Unity Where should an object be placed the same size is obtained, using 1 Between O and F at infinity The number of non-zero rows in 1 Reduced echlon form Conjugate of a matrix The longest wavelength X-ray the crystal for a given family of plant (1) d/4 (2) d/2	Lyman series to the longest wavelength 5/27 (2) 4/9 (3) In ideal differential amplifiers common Infinite (2)	Lyman series to the longest wavelength in the Ball 5/27 (2) 4/9 (3) 1/93 In ideal differential amplifiers common mode rejection Infinite (2) Zero (4) Undeterminal Unity (4) Undeterminal Unity (4) Undeterminal Unity (5) Estate 1	Lyman series to the longest wavelength in the Balmer's 1, 5/27 (2) 4/9 (3) 1/93 (4) (4) (4) (2) d/2 (3) 2d (4)	

233. The Fermi temperature of Cu is about 80,000k. Which of the following is most nearly equal to the average speed of a conduction electron in Cu?

(1) $1.6 \times 10^6 \text{ m/s}$

(2) 3.7×10⁻⁴ m/s

(3) $9.5 \times 10^7 \,\mathrm{m/s}$

(4) $4.6 \times 10^2 \text{ m/s}$

234. Solid Argon is held together by which of the following bonding mechanism?

- (1) Ionic bond
- (2) Van der Waals bond
- (3) Covalent bond
- (4) Partly covalent and partly ionic bond

235.An electron in a metal has an effective mass $(m^*) = 0.1 \text{ m}_e$, where m_e is the rest mass of electron. If this metal is placed in a magnetic field of magnitude 1 Tesla, the cyclotron resonance frequency, ω_e is most nearly:

(1) 930 rad/sec

- (2) 2.7×10¹¹ rad/sec
- (3) 1.8×10¹² rad/sec
- (4) 3.3×109 rad/sec

236.A series RLC circuit is used in a radio to tune to an FM station
broadcasting at 103.7 MHz. The resistance in the circuit is 10ohms
and the inductance is 2.0 µH. What is the best estimate of the
capacitance that should be used :

- (1) 2.3 pF
- (2) 1.0 pF (3) 0.2 pF (4) 7.6 pF
- 237. The de-Broglie wavelength of a particle moving with a velocity 2.25×10⁸ m/s is equal to the wavelength of photon. The ratio of kinetic energy of the particle to the energy of the photon is (velocity of light is $3 \times 10^8 \text{m/s}$:
 - (1) 1/8
- (2) 3/8
- (3) 5/8
- (4) 7/8
- 238. The ratio of the energies of the K characteristic X-rays of Carbon (Z=6) to those of Magnesium (Z=12) is most nearly:
 - (1) 1/4
- 1/2 (2)
- (3) 1/16
- (4) 1/8
- 239. The fictitious force, which acts on a particle in motion, relative to a rotating frame of reference is called:
 - (1) Coriolis force

(2) Newtonian force

(3) Pseudo force

(4) Nuclear force

240. What is the kinematic viscosity of a liquid that has a density of

1.2g cm⁻³ and a dynamic viscosity of 2 cP ?

- (1) $1.67 \times 10^{-6} \text{m}^2/\text{s}$
- (2) $4.30 \times 10^{-7} \text{m}^2/\text{s}$
- (3) $9.92 \times 10^{-8} \text{ m}^2/\text{s}$ (4) $6.13 \times 10^{-3} \text{ m}^2/\text{s}$

ROUGH WORK एक कार्य

61 P.T.O.

ROUGH WORK एक कार्य

ROUGH WORK एक कार्य

अभ्यर्थियों के लिए निर्देश

(इस युस्तिका के प्रथम आवरण पृष्ठ पर तथा उत्तर-पत्र के दोनों पृष्ठों पर केवल नीली-काली बाल-प्वाइंट पेन से ही लिखें)

- प्रश्न पुस्तिका मिलने के 10 मिनट के अन्दर ही देख लें कि प्रश्नपत्र में सभी पृष्ठ मौजूद हैं और कोई
 प्रश्न छूटा नहीं है। पुस्तिका दोषयुक्त पाये जाने पर इसकी सूचना तत्काल कक्ष-निरीक्षक को देकर सम्पूर्ण
 प्रश्नपत्र की दूसरी पुस्तिका प्राप्त कर लें।
- 2. परीक्षा भवन में *लिफाफा राहित प्रवेश-पत्र के अतिरिक्त*, लिखा या सादा कोई भी खुला कागज साथ में न लायें।
- उत्तर-पत्र अलग से दिया गया है। इसे न तो मोड़ें और न ही विकृत करें। दूसरा उत्तर-पत्र नहीं दिया जायेगा। केवल उत्तर-पत्र का ही मूल्यांकन किया जायेगा।
- अपना अनुक्रमांक तथा उत्तर-पत्र का क्रमांक प्रथम आवरण-पृष्ठ पर पेन से निर्धारित स्थान पर लिखें।
- उत्तर-यत्र के प्रथम यृष्ठ पर पेन से अपना अनुक्रमांक निर्धारित स्थान पर लिखें तथा नीचे दिये वृत्तों को गाड़ा कर दें। जहाँ-जहाँ आवश्यक हो वहाँ प्रश्न-पुस्तिका का क्रमांक तथा सेट का नम्बर उचित स्थानों पर लिखें।
- (i. ओ० एम० आर० पत्र पर अनुक्रमांक संख्या, प्रश्नपुस्तिका संख्या व सेट संख्या (यदि कोई हो) तथा प्रश्नपुस्तिका पर अनुक्रमांक और ओ० एम० आर० पत्र संख्या की प्रविद्वियों में उपरिलेखन की अनुमति नहीं है।
- उपर्युक्त प्रविष्टियों में कोई भी यरिवर्तन कक्ष निरीक्षक द्वारा प्रमाणित होना चाहिये अन्यथा यह एक अनुवित साधन का प्रयोग माना जायेगा।
- 8. प्रश्न-पुस्तिका में प्रत्येक प्रश्न के बार वैकल्पिक उत्तर दिये गये हैं। प्रत्येक प्रश्न के वैकल्पिक उत्तर के लिए आपको उत्तर-पत्र की सम्बन्धित पंक्ति के सामने दिये गये वृत्त को उत्तर-पत्र के प्रथम पृष्ठ पर दिये गये निर्देशों के अनुसार पेन से गाड़ा करना है।
- प्रत्येक प्रश्न के उत्तर के लिए केवल एक ही वृत्त को गाढ़ा करें। एक से अधिक वृत्तों को गाढ़ा करने पर अथवा एक वृत्त को अपूर्ण भरने पर वह उत्तर गलत माना जायेगा।
- 10. ध्यान दें कि एक बार स्थाही द्वारा अंकित उत्तर बदला नहीं जा सकता है। यदि आप किसी प्रश्न का उत्तर नहीं देना चाहते हैं, तो संबंधित पंक्ति के सामने दिये गये सभी वृत्तों को खाली छोड़ दें। ऐसे प्रश्नों पर शून्य अंक दिये जायेंगे।
- 11. रफ कार्य के लिए प्रश्न-पुस्तिका के मुखपृष्ठ के अंदर वाला पृष्ठ तथा उत्तर-पुस्तिका के अंतिम पृष्ठ का प्रयोग करें।
- परीक्षा के उपरान्त केवल ओ एम आर उसर-पत्र परीक्षा भवन में जमा कर दें।
- 13. परीक्षा समाप्त होने से पहले परीक्षा भवन से बाहर जाने की अनुमति नहीं होगी।
- यदि कोई अभ्यर्थी परीक्षा में अनुचित साधनों का प्रयोग करता है, तो वह विश्वविद्यालय द्वारा निर्धारित दंड का/की, भागी होगा/होगी।